

Collision Masks Page 1 of 6

COLLISION MASKS

Although we have already worked with Collision Events, it if
often necessary to edit a sprite’s collision mask, which is the

area that is used to calculate when two objects collide or not and
trigger a collision event. One of the many useful tools that

GameMaker includes is a Precise Collision Checking option,

which performs pixel-perfect collision detection between different
objects in your games. Every new sprite you create has this

option enabled by default, and it means that you’ll only get
collision events when there is a visible overlap between the

sprites of two different objects in the game.

Collision Detected Collision Detected No Collision Detected Collision Detected

Neither of these instances
have precise collisions and so
they are checked based on
the bounding box of the
defined masks.

One of these instances has a
precise mask, but the other
doesn’t. Collisions are
resolved based on the
bounding box of the mask.

Both these instances have
been marked as precise, so
no collision is detected even
though their bounding boxes
overlap.

These instances are in
collision as they are both
marked as having a precise
collision mask, so they need
to “touch”.

PRECISE COLLISION CHECKING

It is usually better to avoid using Game Maker's precise collision detection option for platform games.

Precise collision detection uses collision masks that are simply the visible pixels of your sprites, allowing

for perfect collision detection between instances in your games. However, this can often lead to problems
whereby a character or object can get stuck while walking or jumping into platforms because the collision

masks are always changing to exactly match the pixels displayed in the animation frames of the
character. So sometimes collisions can occur in one animation frame, but go away in the next when the

sprite changes.

This can then result in the character getting stuck, flipping back and forth between sprites. There are

also problems with the precise collision on the platforms themselves, where even tiny bumps
stop the character from walking across them properly.

Collision Masks Page 2 of 6

BOX COLLISION DETECTION

It is often easier to control a platform game character when the physical parts of the landscape (the

character and platforms) use bounding box instead of precise collision. When using bounding box, you
use rectangles for calculating collisions. Rectangles produce a much more solid and predictable playing

experience because all the character sprites use an identically sized bounding box and there are no dips
or bumps in the shapes to give unpredictable results.

Another important point to keep in mind is that box-based collision is faster than precise collision
detection because it is very quick to mathematically calculate whether two rectangles overlap, but slower

to compare all the pixels between two images. Therefore, as far as collision in platform games is
concerned, box-based collision is a safer, faster, and more reliable alternative to precise, pixel-based

collision. That’s why it’s important that we make use of box-based collision detection in
our platform games as well as ensuring that the dimensions of each box are the same for all the different

sprites of the main character.

Let’s apply this to a game called Fishpod. I have gone ahead and created sprites and objects for this

game which you can find in the shared directory.

1. Open the Sprite Properties for spr_pod_fall_left and click the Modify Mask button.

2. Under Image, ensure that the Show Collision Mask is enabled so that you can see the results
of the changes you will make.

Collision Masks Page 3 of 6

3. Under Shape, select Rectangle and under Bounding Box, select Manual.

4. Set the Bounding Box dimensions to Left 24, Right 40, Top 24, and Bottom 60.

Collision Masks Page 4 of 6

5. Repeat steps 1-4 with identical values for spr_pod_fall_right, spr_pod_jump_left,

spr_pod_jump_right, spr_pod_stand_left, spr_pod_stand_right, spr_pod_walk_left,
and spr_pod_walk_right.

All of these sprites must have the same bounding box dimensions for the game to work correctly.

6. Repeat steps 1-4 for spr_rock_middle using Left 0, Right 31, Top 5, and Bottom 20. This is
the full-width platform sprite. Note that the bounding box doesn’t include the topmost pixels of

the rock, as this allows the character to have a small overlap when it is standing on the rock. It
also doesn’t include much of the spiky underside of the rock as it is cosmetic.

Collision Masks Page 5 of 6

7. Repeat steps 1-4 for spr_rock_begin using Left 16, Right 31, Top 5, and Bottom 20. This

is a half-width platform sprite, but it still needs to have the same Top and Bottom values as the
full-width platform to ensure smooth movement across them.

8. Repeat steps 1-4 for spr_rock_end using Left 0, Right 15, Top 5, and Bottom 20.

The remaining five sprites (spr_lava_begin, spr_lava_middle, spr_lava_end, spr_gold, and
spr_pansy) can actually keep their default Precise Collision Checking setting. Fishpod won’t

physically interact with them in the same way because they are either hazards that will kill him instantly
or collectables that will disappear on contact. Since they don’t have a physical effect on Fishpod, it isn't

essential for them to use the same approach to bounding-box collision.

Collision Masks Page 6 of 6

You may also be wondering why we set up a bounding box that is much smaller than the size of the
character, but there are actually two good reasons to do this:

 Firstly, it only takes a horizontal overlap of one pixel to support Fishpod standing on top of a
platform. If the bounding box extended right to the end of Fishpod’s flippers, then he could

support himself with the very tip of his flipper in a very unrealistic way. With the smaller

bounding box, he needs at least a whole flipper in contact with a platform to stand on it.

 Secondly, there is nothing more annoying in a game than when an enemy or hazard kills you
when there are clearly no overlapping pixels. If we used the larger, default bounding box, then
collisions could potentially occur when there was actually no actual overlap between the sprites.

Using a smaller bounding box that remains within the center of the sprite helps to prevent this

happening and makes for a less frustrating playing experience.

SOURCE: Habgood, Jacob, Nielsen, Nana, Rijks, Martin and Kevin Crossley. The Game Maker’s Companion: Game

Development: The Journey Continues. New York: Apress, 2010. Print.

